Spinal Excitability Changes after Transspinal and Transcortical Paired Associative Stimulation in Humans
نویسنده
چکیده
Paired associative stimulation (PAS) produces enduring neuroplasticity based on Hebbian associative plasticity. This study established the changes in spinal motoneuronal excitability by pairing transcortical and transspinal stimulation. Transcortical stimulation was delivered after (transspinal-transcortical PAS) or before (transcortical-transspinal PAS) transspinal stimulation. Before and after 40 minutes of each PAS protocol, spinal neural excitability was assessed based on the amplitude of the transspinal-evoked potentials (TEPs) recorded from ankle muscles of both legs at different stimulation intensities (recruitment input-output curve). Changes in TEPs amplitude in response to low-frequency stimulation and paired transspinal stimuli were also established before and after each PAS protocol. TEP recruitment input-output curves revealed a generalized depression of TEPs in most ankle muscles of both legs after both PAS protocols that coincided with an increased gain only after transcortical-transspinal PAS. Transcortical-transspinal PAS increased and transspinal-transcortical PAS decreased the low-frequency-dependent TEP depression, whereas neither PAS protocol affected the TEP depression observed upon paired transspinal stimuli. These findings support the notion that transspinal and transcortical PAS has the ability to alter concomitantly cortical and spinal synaptic activity. Transspinal and transcortical PAS may contribute to the development of rehabilitation strategies in people with bilateral increased motoneuronal excitability due to cortical or spinal lesions.
منابع مشابه
Remodeling Brain Activity by Repetitive Cervicothoracic Transspinal Stimulation after Human Spinal Cord Injury
Interventions that can produce targeted brain plasticity after human spinal cord injury (SCI) are needed for restoration of impaired movement in these patients. In this study, we tested the effects of repetitive cervicothoracic transspinal stimulation in one person with cervical motor incomplete SCI on cortical and corticospinal excitability, which were assessed via transcranial magnetic stimul...
متن کاملLong lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans.
We tested the effect of repetitive transcranial magnetic stimulation (rTMS) over the motor cortex on the size of transcortical stretch and mixed nerve reflexes. Fourteen healthy subjects were investigated using either 25 min of 1 Hz rTMS or 30 min of 0.1 Hz rTMS paired with electrical stimulation of the motor point of the first dorsal interosseous muscle (FDI). Following treatment, we measured ...
متن کاملTranspinal and Transcortical Stimulation Alter Corticospinal Excitability and Increase Spinal Output
The objective of this study was to assess changes in corticospinal excitability and spinal output following noninvasive transpinal and transcortical stimulation in humans. The size of the motor evoked potentials (MEPs), induced by transcranial magnetic stimulation (TMS) and recorded from the right plantar flexor and extensor muscles, was assessed following transcutaneous electric stimulation of...
متن کاملTransspinal constant-current long-lasting stimulation: a new method to induce cortical and corticospinal plasticity.
Functional neuroplasticity in response to stimulation and motor training is a well-established phenomenon. Transcutaneous stimulation of the spine is used mostly to alleviate pain, but it may also induce functional neuroplasticity, because the spinal cord serves as an integration center for descending and ascending neuronal signals. In this work, we examined whether long-lasting noninvasive cat...
متن کاملPaired associative stimulation induces change in presynaptic inhibition of Ia 1 terminals in wrist flexors in humans
24 Enhancements in the strength of corticospinal projections to muscles are induced in 25 conscious humans by paired associative stimulation (PAS) to the motor cortex. Although 26 most of the previous studies support the hypothesis that the increase of the amplitude of 27 motor evoked potentials (MEP) by PAS involves long-term potentiation (LTP)-like 28 mechanism in cortical synapses, changes i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017